NUS Research Week 2022 January 7, 2022

#### **A New Learning Paradigm - Green Learning**

#### C.-C. Jay Kuo University of Southern California

## **Concerns with Deep Learning**

#### - May not be suitable for academic research

- Demanding heavy resources

Computing resource (GPU)

Data collection/labeling cost

- Engineering fine-tuning

Blackbox tools – discouraging original thinking

#### - Previous examples

- Computer graphics and SIGGRAPH
- Image/video coding and standards

## **Green Learning as An Alternative**

#### **Green Machine Learning (or Green AI)**

- Decouple "feature extraction" and "decision" again
  Feature extraction unsupervised, statistics-based, signal processing (filter banks)
  - Decision classification, regression, etc.
- Unique characteristics
  - Low power consumption in both training and testing
  - Small model sizes
  - Suitable for edge/mobile devices
  - Also, beneficial to carbon footprint reduction in cloud servers

## Outline

- Why Green Learning?
- Fundamentals of Green Learning
- Green Learning for Image Classification
- Green Learning for Fake Image Detection
- Green Learning for Point Cloud Classification and Registration

#### Why Green Learning?

#### **How About Image Models?**



Sanh, Victor, et al. "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter." arXiv preprint arXiv:1910.01108 (2019).



Sanh, Victor, et al. "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter." arXiv preprint arXiv:1910.01108 (2019).

#### Language Model – Transformer Architecture



- Transformer is much more expensive than CNN
  - Transformer: Multiple feed-forward layers (close to MLP)
  - CNN: shared filters

## **Development of Language Models**

GPT 3 (2020) = 10 \* Turing NLG



- Data hungry
- Huge model size
- Better performance

#### **Environmental Problem** Carbon Footprint for DL in NLP

#### **Common carbon footprint benchmarks**

in lbs of CO2 equivalent



Chart: MIT Technology Review • Source: Strubell et al. • Created with Datawrapper

Strubell, Emma, Ananya Ganesh, and Andrew McCallum. "Energy and policy considerations for deep learning in NLP." arXiv preprint arXiv:1906.02243 (2019). On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? (Timnit Gebru, 2020)

Sharir, Or, Barak Peleg, and Yoav Shoham. "The Cost of Training NLP Models: A Concise Overview." arXiv preprint arXiv:2004.08900 (2020).

| Consumption                                      | CO <sub>2</sub> e (lbs) |
|--------------------------------------------------|-------------------------|
| Air travel, 1 passenger, NY $\leftrightarrow$ SF | 1984                    |
| Human life, avg, 1 year                          | 11,023                  |
| American life, avg, 1 year                       | 36,156                  |
| Car, avg incl. fuel, 1 lifetime                  | 126,000                 |

#### Training one model (GPU)

| NLP pipeline (parsing, SRL)   | 39      |
|-------------------------------|---------|
| w/ tuning & experimentation   | 78,468  |
| Transformer (big)             | 192     |
| w/ neural architecture search | 626,155 |

Table 1: Estimated  $CO_2$  emissions from training common NLP models, compared to familiar consumption.<sup>1</sup>



## What Green Learning Attempts to Achieve

#### **Objectives:**

- Low power consumption in training and inference (primary goal)
- Small model size
- High performance
- Weak supervision
- Interpretability

#### **Fundamentals of Green Learning**

# **Green Learning (GL)**

**Traditional Pattern Recognition Paradigm** 

- 1<sup>st</sup> module (from data to features) feature extraction
- 2<sup>nd</sup> module (from features to decision) classifier or regressor

#### **Deep Learning Paradigm**

• An integrated module (from data to decision)

#### Advantages of modular design

- Multi-tasking
- Unsupervised feature learning

# **Supervised Feature Learning in DL**

#### **Exemplary network: LeNet-5**



#### 2 convolutional layers + 2 FC layers + 1 output layer

## **Unsupervised Feature Learning in GL**

#### Filter banks

- Multiple filters operating on local spatial patches
- Joint spatial-spectral representation

#### Filter kernel design

- Kernels form a base of a linear subspace
- Subspace approximation



### **One-Stage Transform with Filter Banks**

**Filter Banks: A set of filters operating in parallel on the input** Example: Laws' 3x3 filters for texture analysis



## Laws' Filter Banks

- Input & Output of Laws' filter bank
  - Input: an image of NxN pixels
  - Output (w/o padding): a 3D tensor of dimension (N-2)x(N-2)x9
- Interpretation
  - The response of each filter indicates the frequency components of a local neighborhood of size 3x3 (9 channels)
- Limitations
  - Filter coefficients are fixed (not adaptive to image contents)
  - Only one-stage transform (no information of mid- and longrange neighborhood)

#### New Transforms for Unsupervised Feature Learning

- One-stage Transform
  - Saab transform
    - Saab means "subspace approximation with adjusted bias"
    - Improved Laws' filter banks
    - A variant of PCA
- Multi-stage Transform
  - channel-wise (c/w) Saab transform

## Saab Transform

• Subspace decomposition

$$\mathcal{S} = \mathcal{S}_{DC} \oplus \mathcal{S}_{AC}$$

- DC subspace is spanned by constant-element vector d(1, ..., 1)
- AC subspace is its orthogonal complement
- Conduct PCA on the AC subspace

## Example of Saab Transform (1)

- Gray-scale images: 3x3x1 Saab Transform
  - 1 DC filter: constant-element filter (= mean of a 3x3 patch)
  - 8 AC filters (PCA analysis applied to AC components)
    - Covariance matrix of mean-removed 3x3 patches
    - The first 8 eigenvectors of the 9x9 covariance matrix
      - The last eigenvector has an eigenvalue close to 0
  - Output: (N-2)x(N-2)x9 three-D tensor
  - Why not apply PCA to 3x3 patches directly
    - Need to subtract the ensemble mean of these 3x3 patches, which is sensitive to the image input
    - The ensemble mean of residuals approximates to a zero vector

### Example of Saab Transform (2)

- Color images: 3x3x3 Saab Transform
  - 1 DC filter: constant-element filter (= mean of a 3x3x3 patch)
  - 26 AC filters (PCA analysis applied to AC components)
    - Covariance matrix of mean-removed 3x3x3 patches
    - The first 26 eigenvectors of the 27x27 covariance matrix
      - The last eigenvector has an eigenvalue close to 0
- Common filter sizes in spatial domain
  - 2x2, 3x3, 4x4, 5x5, etc.
  - Should avoid the use of large filter sizes
    - Correlation between long-range pixels is weaker
    - The dimension of the output tensor would become too large

## **Lossless and Lossy Saab Transform**

- Example of Lossless Saab Transform
  - Input: NxN (N even)
  - Filter size: 2x2
  - Stride: 2
  - Output: (N/2)x(N/2)x4

#### Redundant Saab Transform

- The above setting but with stride =1
- Output: (N-2)x(N-2)x4
- Redundancy removal: (2x2) to (1x1) pooling
- Lossy Saab Transform
  - Discard channels with small responses dimension reduction

### **Generalization to Multi-Stage Saab Transform**



## **Correlation Analysis of Saab Coefficients**



**Table 1**. Averaged correlations of filtered AC outputs from the first to the third Pixelhop units with respect to the MNIST, Fashion MNIST and CIFAR-10 datasets.

| THE HOL WITH | chine to databe     | 667 •               |                     |
|--------------|---------------------|---------------------|---------------------|
| Dataset      | MNIST               | Fashion MNIST       | CIFAR-10            |
| Spatial 1    | $0.48 \pm 0.05$     | $0.51 \pm 0.03$     | $0.53 \pm 0.03$     |
| Spatial 2    | $0.22 \pm 0.03$     | $0.29 \pm 0.05$     | $0.27 \pm 0.06$     |
| Spectral 1   | $0.33 \pm 0.07$     | $0.12 \pm 0.02$     | $0.0156 \pm 0.0005$ |
| Spectral 2   | $0.18 \pm 0.02$     | $0.13 \pm 0.01$     | $0.0188 \pm 0.0004$ |
| Spectral 3   | $0.0099 \pm 0.0001$ | $0.0082 \pm 0.0001$ | $0.0079 \pm 0.0004$ |

#### **Comparison of Saab and c/w Saab Transforms**

Saab Transform



#### Channel-wise (c/w) Saab Transform

## 3-Hop c/w Saab Transform



#### **Frequently Asked Questions**

- Is the Saab transform linear?
  - Yes. More precisely, it is an affine transform.
- Can a linear transform yield powerful features?
  - Nonlinear classifiers are important
  - Linear features may not be that bad
    - Easy to understand
    - Clustering can increase the power of Saab features
      - Clustering can be done after (or before) the Saab transform

## **PixelHop**



## **Green Learning for Image Classification**

- Yueru Chen and C.-C. Jay Kuo, "PixelHop: a successive subspace learning (SSL) method for object classification," the Journal of Visual Communications and Image Representation, Vol. 70, July 2020, 102749.
- Yueru Chen, Mozhdeh Rouhsedaghat, Suya You, Raghuveer Rao and C.-C. Jay Kuo, "PixelHop++: A Small Successive-Subspace-Learning-Based (SSL-based) Model for Image Classification," IEEE International Conference on Image Processing (ICIP), Dubai, United Arab Emirates, October 25-28, 2020.

# **Experiment Set-up**

- Datasets:
  - > MNIST
    - Handwritten digits 0-9
    - Gray-scale images with size 32x32
    - Training set: 60k, Testing set: 10k
  - Fashion-MNIST
    - Gray-scale fashion images with size 32 × 32
    - Training set: 60k, Testing set: 10k
  - > CIFAR-10
    - 10 classes of tiny RGB images with size 32 × 32
    - Training set: 50k, Testing set: 10k
- Evaluation:
  - Fop-1 classification accuracy



MNIST



**Fashion-MNIST** 



CIFAR-10

# **Performance Comparison**

#### Table 8

Comparison of testing accuracy (%) of LeNet-5, feedforward-designed CNN (FF-CNN), PixelHop and PixelHop<sup>+</sup> for MNIST, Fashion MNIST and CIFAR-10.

| Method                | MNIST | Fashion MNIST | CIFAR-10 |
|-----------------------|-------|---------------|----------|
| LeNet-5               | 99.04 | 91.08         | 68.72    |
| FF-CNN                | 97.52 | 86.90         | 62.13    |
| PixelHop              | 98.90 | 91.30         | 71.37    |
| PixelHop <sup>+</sup> | 99.09 | 91.68         | 72.66    |

#### Table 9

Comparison of training time of the LeNet-5 and the PixelHop method on the MNIST, the Fashion MNIST and the CIFAR-10 datasets.

| Method   | MNIST   | Fashion MNIST | CIFAR-10 |
|----------|---------|---------------|----------|
| LeNet-5  | ~25 min | ~25 min       | ~45 min  |
| PixelHop | ~15 min | ~15 min       | ~30 min  |

## **Weak Supervision**



## PixelHop++



#### **Model Size and Test Accuracy Comparison**

**Table 3.** Comparison of test accuracy (%) of LeNet-5 and Pixel-Hop++ for MNIST, Fashion MNIST and CIFAR-10.

| Method             | MNIST | Fashion MNIST | CIFAR-10 |
|--------------------|-------|---------------|----------|
| LeNet-5            | 99.04 | 89.74         | 68.72    |
| PixelHop++ (Large) | 98.49 | 90.17         | 66.81    |
| PixelHop++ (Small) | 97.98 | 88.84         | 64.75    |

**Table 4**. Comparison of the model size (in terms of the total parameter numbers) of LeNet-5 and PixelHop++ for the MNIST, the Fashion MNIST and the CIFAR-10 datasets.

| Method             | MNIST   | Fashion MNIST | CIFAR-10 |
|--------------------|---------|---------------|----------|
| LeNet-5            | 61,706  | 194,558       | 395,006  |
| PixelHop++ (Large) | 111,981 | 127,186       | 115,623  |
| PixelHop++ (Small) | 29,514  | 33,017        | 62,150   |

### **Green Learning for Fake Image Detection**

Hong-Shuo Chen, Mozhdeh Rousedaghat, Hamza Ghani, Shouwen Hu, Suya You and C.-C. Jay Kuo, "Defakehop: a light-weight high-performance deepfake detector," IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, July 5-9, 2021.

#### Introduction

- **Deepfake videos** are synthetic media in which a person in a video is replaced with someone else
- **Deepfake videos** can be potentially harmful to society, from non-consensual explicit content creation to forged media by foreign adversaries used in disinformation campaigns
- As the number of Deepfake video contents grows rapidly, an automatic and effective Deepfake detection mechanism is in urgent need



Original video

Fake video
# **Motivation**

- Most state-of-the-art Deepfake detection methods are based upon deep learning (DL) technique
- They can be mainly categorized into two types
  - convolutional neural networks (CNNs)
  - integrate CNNs and recurrent neural networks (RNNs)



# **Motivation**

- The size of DL-based methods is large -- containing hundreds of thousands or even millions of model parameters
- Training deep neural networks is computationally expensive
- There are also **non-DL-based Deepfake detection** methods, where handcrafted features are extracted and fed into classifiers
- The performance of non-DL-based methods is usually **inferior to that of DL-based ones**
- Our goal is to develop a light-weight non-DL-based methods and achieve a high-performance results

# **Face Preprocessing**



Sampling Frames

Landmarks Extraction

Face Alignment

**Regions Extraction** 

# **Defakehop Framework**



# **Channel Wise Saab Transform**



# **Model Size**

| Subsystem               | Number of Parameters |
|-------------------------|----------------------|
| Pixelhop++ Hop-1        | 270                  |
| Pixelhop++ Hop-2        | 90                   |
| Pixelhop++ Hop-3        | 90                   |
| PCA Hop-1               | 10,125               |
| PCA Hop-2               | 1,225                |
| PCA Hop-3               | 45                   |
| Channel-Wise XGBoost(s) | 12,000               |
| Fianl XGBoost           | 19,000               |
| Total                   | 42,845               |

#### Table 4. The number of parameters for various parts.

## **Datasets**

- We use two datasets from 1<sup>st</sup> generation dataset and two datasets from 2<sup>nd</sup> generation dataset.
- The numbers of real, fake, train and test video for each dataset are shown.

| Datasets        | Real | Fake | Train | Test |
|-----------------|------|------|-------|------|
| UADFV           | 49   | 49   | 78    | 20   |
| FaceForensics++ | 1000 | 1000 | 1440  | 280  |
| Celeb-DF v1     | 408  | 795  | 1103  | 100  |
| Celeb-DF v2     | 890  | 5639 | 6011  | 518  |

# **Experiments**

**Table 2**. Comparison of the detection performance of benchmarking methods with the AUC value at the frame level as the evaluation metric. The **boldface** and the underbar indicate the best and the second-best results, respectively. The *italics* means it does not specify frame or video level AUC. The AUC results of DefakeHop is reported in both frame-level and video-level. The AUC results of benchmarking methods are taken from [19] and [20]. <sup>*a*</sup> deep learning method, <sup>*b*</sup> non deep learning method.

|                                  |                               | 1st Genera   | ation datasets                | 2nd Genera |          |            |
|----------------------------------|-------------------------------|--------------|-------------------------------|------------|----------|------------|
|                                  | Method                        | UADFV        | FF++/DF                       | Celeb-DF   | Celeb-DF | Number of  |
|                                  | Ivicuiou                      | UADIV        | $\Gamma \Gamma + + / D\Gamma$ | v1         | v2       | parameters |
| Zhou et al(2017) [3]             | InceptionV3 <sup>a</sup>      | 85.1%        | 70.1%                         | 55.7%      | 53.8%    | 24M        |
| Afchar <i>et al</i> (2018) [4]   | Meso4 <sup>a</sup>            | 84.3%        | 84.7%                         | 53.6%      | 54.8%    | 27.9K      |
| Li et al(2018) [17]              | FWA <sup>a</sup> (ResNet-50)  | 97.4%        | 80.1                          | 53.8%      | 56.9%    | 23.8M      |
| Yang et al(2019) [9]             | HeadPose <sup>b</sup> (SVM)   | 89%          | 47.3%                         | 54.8%      | 54.6%    | -          |
| Matern et al(2019) [11]          | $VA-MLP^b$                    | 70.2%        | 66.4%                         | 48.8%      | 55%      | -          |
| Rossler <i>et al</i> (2019) [2]  | Xception-raw <sup>a</sup>     | 80.4%        | <b>99.7%</b>                  | 38.7%      | 48.2%    | 22.8M      |
| Nguyen <i>et al</i> (2019) [5]   | Multi-task <sup>a</sup>       | 65.8%        | 76.3%                         | 36.5%      | 54.3%    | -          |
| Nguyen <i>et al</i> (2019) [6]   | CapsuleNet <sup>a</sup>       | 61.3%        | 96.6%                         | -          | 57.5%    | 3.9M       |
| Sabir <i>et al</i> (2019) [8]    | DenseNet+RNN <sup>a</sup>     | -            | <u>99.6%</u>                  | -          | -        | 25.6M      |
| Li et al(2020) [17]              | DSP-FWA <sup>a</sup> (SPPNet) | <u>97.7%</u> | 93%                           | -          | 64.6%    | -          |
| Tolosana <i>et al</i> (2020) [1] | <i>Xception</i> <sup>a</sup>  | 100%         | 99.4%                         | 83.6%      | -        | 22.8M      |
| 0.11#0                           | DefakeHop (Frame)             | 100%         | 95.95%                        | 93.12%     | 87.65%   | 42.8K      |
| Ours                             | DefakeHop (Video)             | 100%         | 97.45%                        | 94.95%     | 90.56%   | 42.8K      |

# **Experiments**

- The ensemble of multiple facial regions can boost the AUC values by up to 5%. Each facial region has different strengths on various faces, and their ensemble gives the best result
- The performance of DefakeHop degrades by 5% as video quality becomes worse

**Table 1.** The AUC value for each facial region and the finalensemble result.

|             | Left eye | Right eye | Mouth  | Ensemble |
|-------------|----------|-----------|--------|----------|
| UADFV       | 100%     | 100%      | 100%   | 100%     |
| FF++ / DF   | 94.37%   | 93.73%    | 94.25% | 97.45%   |
| Celeb-DF v1 | 89.69%   | 88.20%    | 92.66% | 94.95%   |
| Celeb-DF v2 | 85.17%   | 86.41%    | 89.66% | 90.56%   |

 Table 3. Comparison of Deepfake algorithms and qualities.

|       | FF++ with | Deepfakes | FF++ with FaceSwap |          |  |
|-------|-----------|-----------|--------------------|----------|--|
|       | HQ (c23)  | LQ (c40)  | HQ (c23)           | LQ (c40) |  |
| Frame | 95.95%    | 93.01%    | 97.87%             | 89.14%   |  |
| Video | 97.45%    | 95.80%    | 98.78%             | 93.22%   |  |

# **Experiments**

DefakeHop can achieve about 85% AUC with less than 5% (250 videos) of the whole training data.



Fig. 4. The ROC curve of DefakeHop for different datasets.



**Fig. 5**. The plot of AUC values as a function of the training video number.



2nd generation dataset: Celeb-DF

# **Our codes are released in GitHub!**

| 📮 hongsh | uochen / <b>DefakeHop</b>                            |                           |                                  | ⊙ Unwatch → 1 🛉 Un                                            | star 14 Sork 6 |  |
|----------|------------------------------------------------------|---------------------------|----------------------------------|---------------------------------------------------------------|----------------|--|
| <> Code  | ! Issues 11 Pull requests 🕞 A                        | Actions 🛄 Projects 🛄 Wiki | 🕑 Security 🗠 Insights 🔯 Settings |                                                               |                |  |
|          | <b>양 master →                                   </b> |                           | Go to file Add file ▼            | About                                                         | ŝ              |  |
|          | hongshuochen Update model.py                         |                           | 74338b7 on Mar 29 🕚 18 commits   | Official code for Defake<br>Weight High-Performan<br>Detector |                |  |
|          | ata/UADFV                                            | Delete .DS_Store          | 2 months ago                     | <ul> <li>∂ arxiv.org/abs/2103.06</li> </ul>                   | 020            |  |
|          | img                                                  | add images and data       | 2 months ago                     | deepfake-detection                                            | 525            |  |
|          | preprocessing                                        | add preprocessing         | 2 months ago                     | successive-subspace-learning                                  |                |  |
|          | B README.md                                          | Update README.md          | 2 months ago                     | green-learning                                                |                |  |
|          | defakeHop.py                                         | first version             | 2 months ago                     | 🕮 Readme                                                      |                |  |
|          | 🗋 model.py                                           | Update model.py           | 2 months ago                     |                                                               |                |  |
|          | 🗋 multi_cwSaab.py                                    | add images and data       | 2 months ago                     | Releases                                                      |                |  |
|          | 🗅 saab.py                                            | first version             | 2 months ago                     | No releases published                                         |                |  |
|          | 🗋 utils.py                                           | first version             | 2 months ago                     | Create a new release                                          |                |  |

# Summary

- Defakehop has several advantages
  - a smaller model size
  - fast training procedure
  - high detection AUC
  - needs fewer training samples
- Extensive experiments were conducted to demonstrate its high detection performance

# Green Learning for Point Cloud Classification and Registration

- Min Zhang, Haoxuan You, Pranav Kadam, Shan Liu and C.-C. Jay Kuo, "PointHop: an explainable machine learning method for point cloud classification," IEEE Trans. on Multimedia, Vol. 22, No. 7, pp. 1744-1755, July 2020.
- Min Zhang, Yifan Wang, Pranav Kadam, Shan Liu and C.-C. Jay Kuo, "PointHop++: A Lightweight Learning Model on Point Sets for 3D Classification." IEEE International Conference on Image Processing (ICIP), Dubai, United Arab Emirates, October 25-28, 2020.
- Min Zhang, Pranav Kadam, Shan Liu and C.-C. Jay Kuo, "Unsupervised feedforward feature (UFF) learning for point cloud classification and segmentation," IEEE International Conferences on Visual Communications and Image Processing (VCIP), Macau, Dec. 1-4, 2020.
- Pranav Kadam, Min Zhang, Shan Liu, and C-C. Jay Kuo. "R-PointHop: A Green, Accurate and Unsupervised Point Cloud Registration Method." arXiv preprint arXiv:2103.08129 (2021).



51

# Background

What: A point cloud is a set of points in the 3D spaceHow: 3D scanning devices such as Lidar, measured by time of flight (ToF)Why? With reduced cost of sensors, point cloud processing has become popular





# **Datasets and Performance Metrics**

#### **ModelNet-40**

- 40 categories of objects (e.g., airplane, table, desk, sofa)
- Each object has 2048 points

#### **ShapeNet Part**

- 16 object categories
- 50 parts: each object is annotated with two to six parts
- Each shape has 2048 points

#### **Evaluation metric:**

- Classification accuracy
- Segmentation Intersection over Union (IoU)
- Registration Mean Square Error (MSE)



# **Two Topics**









# PointHop – A Successive-Subspace-Learningbased (SSL-based) or Green Learning (GL) method



Zhang, Min, et al. "PointHop: An Explainable Machine Learning Method for Point Cloud Classification." IEEE Transactions on Multimedia (2020).





# **PointHop Unit**



Constructing a local descriptor with attributes of one-hop neighbors

- Solve both unordered and disturbance problem
- The attributes of a point grow from a low dimension one to a high dimension one

Zhang, Min, et al. "PointHop: An Explainable Machine Learning Method for Point Cloud Classification." *IEEE Transactions on Multimedia* (2020).

Using the Saab transform to reduce the dimension of the local descriptor

• the dimension grows at a slower rate 56

# PointHop++

#### **New features:**



- Reduce model complexity c/w Saab transform
- Order discriminant features automatically based on the cross-entropy criterion





# Performance Evaluation for ModelNet-40: Accuracy and Sparser Models

|              | Method                | Accurac   | ey (%)  |
|--------------|-----------------------|-----------|---------|
|              | Wiethou               | class-avg | overall |
|              | PointNet [10]         | 86.2      | 89.2    |
| Supervised   | PointNet++ [11]       | -         | 90.7    |
|              | PointCNN [12]         | 88.1      | 92.2    |
|              | DGCNN [13]            | 90.2      | 92.2    |
|              | LFD-GAN [28]          | -         | 85.7    |
| Unsupervised | FoldingNet [29]       | -         | 88.4    |
| Unsupervised | PointHop [15]         | 84.4      | 89.1    |
|              | PointHop++ (baseline) | 85.6      | 90.3    |
|              | PointHop++ (FS)       | 86.5      | 90.8    |
|              | PointHop++ (FS+ES)    | 87        | 91.1    |



# Performance Evaluation for ModelNet-40: Complexity and Model Size

|     | Method          | Ti       | me        | Parameter No. (MB) |            |       |  |
|-----|-----------------|----------|-----------|--------------------|------------|-------|--|
|     | Wiethou         | Training | Inference | Filter             | Classifier | Total |  |
|     | PointNet [10]   | 7        | 10        | -                  | -          | 3.48  |  |
| GPU | PointNet++ [11] | 7        | 14        | -                  | -          | 1.48  |  |
|     | DGCNN [13]      | 21       | 154       | -                  | -          | 1.84  |  |
| ·   | PointHop [15]   | 0.33     | 108       | 0.037              | -          | -     |  |
| CPU | PointHop++      | 0.42     | 97        | 0.009              | 0.15       | 0.159 |  |
|     |                 | (Hours)  | (ms)      |                    |            |       |  |



# **POINT CLOUD REGISTRATION**

• Registration is the process of finding a **spatial transformation** that optimally **aligns** two point

clouds

- Register point clouds to merge multiple point cloud scans to get a globally consistent view
- Registration acts as a pre-processing step before other tasks





### **PROBLEM STATEMENT**

• We are interested in finding a rigid transformation (rotation and translation) that optimally registers the two

point clouds

- Input 1. target point cloud (N<sub>t</sub> x 3)
  - 2. source point cloud  $(N_s \times 3)$
- Goal Align source to target (N<sub>s</sub> x 3 -> N<sub>s</sub> x 3)
- Output 3D Rotation matrix (R) and translation vector (t) that minimizes point-wise MSE

$$R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \Box_{x} & -\sin \Box_{x} \\ 0 & \sin \Box_{x} & \cos \Box_{x} \end{bmatrix} \begin{bmatrix} \cos \Box_{y} & 0 & -\sin \Box_{y} \\ 0 & 1 & 0 \\ \sin \Box_{y} & 0 & \cos \Box_{y} \end{bmatrix} \begin{bmatrix} \cos \Box_{z} & -\sin \Box_{z} & 0 \\ \sin \Box_{z} & \cos \Box_{z} & 0 \\ 0 & 0 & 1 \end{bmatrix}, t = \begin{bmatrix} t_{x} \\ t_{y} \\ t_{z} \end{bmatrix}$$



#### **R-POINTHOP**



62 🔇 📎



# LOCAL REFERENCE FRAME (LRF)

- Consider a local patch around every point find K nearest points
- Take a PCA of the K x 3 data matrix
- The three principal components gives orthogonal axes ranked in order of decreasing variance
- These axes are invariant under any rigid transformation (rotation and translation)





# **POINT ATTRIBUTE CONSTRUCTION**

- Find *K* nearest neighbors of a point
- Project neighbors onto local reference frame (LRF) XYZ coordinates to local coordinates
- Divide 3D space into 8 octants based on local coordinates space partitioning
- Compute mean of points in each octant and concatenate 8 means, total 24D attribute





## **SIGN RESOLUTION**

- Every eigen vector comes with a sign ambiguity of +/-
- Choice of sign affects space partitioning, hence a consistency is desired
- Solution project the neighboring points onto a principal axis to get 1D local coordinates
- Order points in ascending order and calculate moment about median point
- If left moment > right moment, flip the sign
- This can be formulated as multiplying local coordinates with reflection matrix whose diagonal entries are 1 / -1





## **MULTI-HOP FEATURE LEARNING**

- 1. Channel-wise Saab transform discard nodes with energy less than threshold
- 2. Downsample the point cloud
- 3. Repeat attribute building step (R-PointHop unit)
- 4. Collect all leaf nodes at end of fourth hop (point feature)





### **FEATURE LEARNING**

- 1. Use of LRF makes features invariant to rotation and translation robust correspondence
- 2. Hierarchical multi-hop approach helps learn short-, mid- and long-range point relations
- 3. No class label, no pairs of point clouds with ground truth transformations to learn Saab kernels
- 4. One pass feedforward
- 5. Independent of correspondence and transformation estimation modules



68 ()

### **POINT CORRESPONDENCES**

- For every point in the source, find its matching point in target using nearest neighbor in feature space
- Select a subset of good correspondences (NEW!!)
- 1. Smaller I2 distance in feature space
- 2. Smaller ratio of distance to first neighbor by distance to second neighbor





## **POINT CORRESPONDENCES**

- Rich feature information to filter out correspondences against use of spatial information in SPA
- Favors partial point cloud registration –
- 1. overlapping points have smaller I2 distance in feature space
- 2. Cannot comment from their spatial coordinates



### **TRANSFORMATION ESTIMATION – SVD**

- Given corresponding points (f<sub>i</sub>, g<sub>i</sub>) solve the **orthogonal procrustes problem**
- 1. Find means  $\overline{f} = \frac{1}{N} \sum_{i=1}^{N} f_i$  and  $\overline{g} = \frac{1}{N} \sum_{i=1}^{N} g_i$
- 2. Compute covariance matrix  $Cov(F,G) = \sum_{i=1}^{N} (f_i \overline{f})(g_i \overline{g})^T$
- 3. Find SVD of covariance matrix  $Cov(F, G) = USV^T$
- 4. Optimal R and t are given by  $R^* = VU^T$  and  $t^* = -R^*\overline{f} + \overline{g}$









### **MODELNET40 DATASET**

- 40 classes of CAD models
- 2048 points in each point cloud
- 9840 training samples







### **EXPERIMENTAL SETUP**

- For training use the target point clouds (without rotations)
- For testing apply a random rotation and translation along three coordinate axes to get source
- Rotation uniformly sample rotation angle in [0, 45°]
- Translation uniformly sample in [-0.5,0.5]
- **Comparisons with** ICP, Go-ICP, FGR (model free)

PointNetLK, Deep Closest Point (DCP), PR-Net (deep learning)

Salient Points Analysis (SPA)

• Evaluation metric – MSE, RMSE, MAE between ground truth and predicted angles

#### **TEST ON UNSEEN OBJECTS AND UNSEEN CLASSES**

- Best performance among benchmark methods
- Moreover, R-PointHop can better generalize on unseen classes
  - than DCP and PointNetLK



USC University of Southern California

TABLE I REGISTRATION ON UNSEEN POINT CLOUDS

TABLE IIREGISTRATION ON UNSEEN CLASSES

| Method          | MSE<br>(R) | RMSE<br>(R) | MAE<br>(R) | MSE<br>(t) | RMSE<br>(t) | MAE<br>(t) | Method          | MSE<br>(R) | RMSE<br>(R) | MAE<br>(R) | MSE<br>(t) | RMSE<br>(t) | MAE<br>(t) |
|-----------------|------------|-------------|------------|------------|-------------|------------|-----------------|------------|-------------|------------|------------|-------------|------------|
| ICP [8]         | 451.11     | 21.24       | 17.69      | 0.049701   | 0.222937    | 0.184111   | ICP [8]         | 467.37     | 21.62       | 17.87      | 0.049722   | 0.222831    | 0.186243   |
| Go-ICP [31]     | 140.47     | 11.85       | 2.59       | 0.00659    | 0.025665    | 0.007092   | Go-ICP [31]     | 192.25     | 13.86       | 2.91       | 0.000491   | 0.022154    | 0.006219   |
| FGR [33]        | 87.66      | 9.36        | 1.99       | 0.000194   | 0.013939    | 0.002839   | FGR [33]        | 97.00      | 9.84        | 1.44       | 0.000182   | 0.013503    | 0.002231   |
| PointNetLK [25] | 227.87     | 15.09       | 4.23       | 0.000487   | 0.022065    | 0.005405   | PointNetLK [25] | 306.32     | 17.50       | 5.28       | 0.000784   | 0.028007    | 0.007203   |
| DCP [23]        | 1.31       | 1.14        | 0.77       | 0.000003   | 0.001786    | 0.001195   | DCP [23]        | 9.92       | 3.15        | 2.01       | 0.000025   | 0.005039    | 0.003703   |
| SPA [26]        | 318.41     | 17.84       | 5.43       | 0.000022   | 0.004690    | 0.003261   | SPA [26]        | 354.57     | 18.83       | 6.97       | 0.000026   | 0.005120    | 0.004211   |
| R-PointHop      | 0.12       | 0.34        | 0.24       | 0.000000   | 0.000374    | 0.000295   | R-PointHop      | 0.12       | 0.34        | 0.25       | 0.000000   | 0.000387    | 0.000298   |

#### unseen objects

#### unseen classes



## **TEST ON NOISY DATA**

- Robust to noise
- Refinement using ICP further reduces error

TABLE III REGISTRATION ON NOISY POINT CLOUDS

| Method           | MSE<br>(R) | RMSE<br>(R) | MAE<br>(R) | MSE<br>(t) | RMSE<br>(t) | MAE<br>(t) |
|------------------|------------|-------------|------------|------------|-------------|------------|
| ICP [8]          | 558.38     | 23.63       | 19.12      | 0.058166   | 0.241178    | 0.206283   |
| Go-ICP [31]      | 131.18     | 11.45       | 2.53       | 0.000531   | 0.023051    | 0.004192   |
| FGR [33]         | 607.69     | 24.65       | 10.05      | 0.011876   | 0.108977    | 0.027393   |
| PointNetLK [25]  | 256.15     | 16.00       | 4.59       | 0.000465   | 0.021558    | 0.005652   |
| DCP [23]         | 1.17       | 1.08        | 0.74       | 0.000002   | 0.001500    | 0.001053   |
| SPA [26]         | 331.73     | 18.21       | 6.28       | 0.000462   | 0.021511    | 0.004100   |
| R-PointHop       | 7.73       | 2.78        | 0.98       | 0.000001   | 0.000874    | 0.003748   |
| R-PointHop + ICP | 1.16       | 1.08        | 0.21       | 0.000001   | 0.000744    | 0.001002   |

#### Add Gaussian noise of zero mean and 0.01 variance to source

USCUniversity of Southern California





### **TEST ON PARTIAL DATA**

• Only a part of the source and target point cloud visible



REGISTRATION ON PARTIAL POINT CLOUDS (R-POINTHOP\* INDICATES CHOOSING CORRESPONDENCES WITHOUT THE RATIO TEST).

|                 |         | Registration errors on unseen objects |       |        |        |        |         |       | Registration errors on unseen classes |        |        |        |
|-----------------|---------|---------------------------------------|-------|--------|--------|--------|---------|-------|---------------------------------------|--------|--------|--------|
| Method          | MSE     | RMSE                                  | MAE   | MSE    | RMSE   | MAE    | MSE     | RMSE  | MAE                                   | MSE    | RMSE   | MAE    |
| Methou          | (R)     | (R)                                   | (R)   | (t)    | (t)    | (t)    | (R)     | (R)   | (R)                                   | (t)    | (t)    | (t)    |
| ICP [8]         | 1134.55 | 33.68                                 | 25.05 | 0.0856 | 0.2930 | 0.2500 | 1217.62 | 34.89 | 25.46                                 | 0.0860 | 0.293  | 0.251  |
| Go-ICP [31]     | 195.99  | 13.99                                 | 3.17  | 0.0011 | 0.0330 | 0.0120 | 157.07  | 12.53 | 2.94                                  | 0.0009 | 0.031  | 0.010  |
| FGR [33]        | 126.29  | 11.24                                 | 2.83  | 0.0009 | 0.0300 | 0.0080 | 98.64   | 9.93  | 1.95                                  | 0.0014 | 0.038  | 0.007  |
| PointNetLK [25] | 280.04  | 16.74                                 | 7.55  | 0.0020 | 0.0450 | 0.0250 | 526.40  | 22.94 | 9.66                                  | 0.0037 | 0.061  | 0.033  |
| DCP [23]        | 45.01   | 6.71                                  | 4.45  | 0.0007 | 0.0270 | 0.0200 | 95.43   | 9.77  | 6.95                                  | 0.0010 | 0.034  | 0.025  |
| PR-Net [38]     | 10.24   | 3.12                                  | 1.45  | 0.0003 | 0.0160 | 0.0100 | 15.62   | 3.95  | 1.71                                  | 0.0003 | 0.017  | 0.011  |
| R-PointHop*     | 3.58    | 1.89                                  | 0.11  | 0.0002 | 0.0150 | 0.0008 | 3.75    | 1.94  | 0.12                                  | 0.0002 | 0.0151 | 0.0008 |
| R-PointHop      | 2.75    | 1.66                                  | 0.09  | 0.0002 | 0.0149 | 0.0008 | 2.53    | 1.59  | 0.08                                  | 0.0002 | 0.0148 | 0.0008 |

75 🔇 🔊



#### TEST ON REAL WORLD DATA STANFORD BUNNY

- Real scans of bunny 10 scans, ~50k points in each point cloud
- The model trained on ModelNet40 is reused
- Surprisingly, DCP does not do so well for this dataset

#### TABLE V REGISTRATION ON THE STANFORD BUNNY DATASET

| Method      | MSE<br>(R) | RMSE<br>(R) | MAE<br>(R) | MSE<br>(t) | RMSE<br>(t) | MAE<br>(t) |
|-------------|------------|-------------|------------|------------|-------------|------------|
| ICP [8]     | 177.35     | 13.32       | 10.72      | 0.0024     | 0.0492      | 0.0242     |
| Go-ICP [31] | 166.85     | 12.92       | 4.52       | 0.0018     | 0.0429      | 0.0282     |
| FGR [33]    | 3.98       | 1.99        | 1.49       | 0.0397     | 0.1993      | 0.1658     |
| DCP [23]    | 41.45      | 6.44        | 4.78       | 0.0016     | 0.0406      | 0.0374     |
| R-PointHop  | 2.21       | 1.49        | 1.09       | 0.0013     | 0.0361      | 0.0269     |





#### **TEST ON REAL WORLD DATA STANFORD 3D SCANNING REPOSITORY**

• Registration on some more scans – drill, armadillo, Buddha, dragon





# **LOCAL VS GLOBAL REGISTRATION**

- ICP and its variants work well only in presence of a good initial alignment (local in nature)
- Rotation invariant features make R-PointHop useful for global registration
- Can be used as an initialization for ICP





## **TOWARDS GREEN LEARNING**

- Deep learning has reformulated registration as a supervised learning problem large number of pairs of point clouds used along with ground truth transformations
- Large model size, longer training times, expensive GPUs large carbon footprint
- Classical model-free methods are favorable in this respect, but poor performance

| Method                      | Training time                      | Model size | Resources            |
|-----------------------------|------------------------------------|------------|----------------------|
| PointNetLK                  | 40 minutes / epoch<br>(200 epochs) | 630kB      | 1 GPU                |
| Deep Closest Point<br>(DCP) | 27 hours                           | 21MB       | 8 GPUs               |
| R-PointHop                  | 40 minutes                         | 200kB      | CPU + multithreading |

**Green learning – low cost and high performance!** 

# Conclusion

# Similarities of GL and DL

|                               | GL                                             | DL                                             |
|-------------------------------|------------------------------------------------|------------------------------------------------|
| Information collection        | Successively growing neighborhoods             | Gradually enlarged receptive fields            |
| Information<br>processing     | Trade spatial dimension for spectral dimension | Trade spatial dimension for spectral dimension |
| Spatial information reduction | Spatial pooling                                | Spatial pooling                                |

# **Differences between GL and DL**

|                                         | GL                     | DL                |
|-----------------------------------------|------------------------|-------------------|
| Model expandability                     | Non-parametric model   | Parametric model  |
| Incremental learning                    | Easy                   | Difficult         |
| Model architecture                      | Flexible               | Networks          |
| Model interpretability                  | Easy                   | Difficult         |
| Model parameter search                  | Feedforward design     | Backpropagation   |
| Training/testing complexity             | Low                    | High              |
| Spectral dim. reduction                 | Subspace approximation | Number of filters |
| Task-independent features               | Yes                    | No                |
| Multi-tasking                           | Easy                   | Difficult         |
| Incorporation of priors and constraints | Easy                   | Difficult         |
| Weak supervision                        | Easy                   | Difficult         |
| Adversarial Attacks                     | Difficult              | Easy              |