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Concerns with Deep Learning

- May not be suitable for academic research
- Demanding heavy resources
Computing resource (GPU)
Data collection/labeling cost
- Engineering fine-tuning
Blackbox tools — discouraging original thinking
- Previous examples
- Computer graphics and SIGGRAPH
- Image/video coding and standards



Green Learning as An Alternative

Green Machine Learning (or Green Al)

- Decouple “feature extraction” and “decision” again
Feature extraction — unsupervised, statistics-based, signal processing

(filter banks)
Decision — classification, regression, etc.

- Unique characteristics
Low power consumption in both training and testing

Small model sizes

Suitable for edge/mobile devices
Also, beneficial to carbon footprint reduction in cloud servers



Outline

e Why Green Learning?

* Fundamentals of Green Learning

 Green Learning for Image Classification

 Green Learning for Fake Image Detection

 Green Learning for Point Cloud Classification and
Registration



Why Green Learning?



How About Image Models?

Number of Model Parameters

Ai2 Openal
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Number of Layers Number of Parameters
ResNet 18 11.174M
ResNet 34 21.282M
ResNet 50 23.521M
ResNet 101 42.513M
ResNet 152 58.157M

Sanh, Victor, et al. "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter." arXiv preprint arXiv:1910.01108 (2019).




Development of Language Models
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Sanh, Victor, et al. "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter." arXiv preprint arXiv:1910.01108 (2019).



Language Model — Transformer Architecture

Feed-forward Layer

Iy
768 dims
C Add & Layer norm
: xﬁ_\
Multi-head self-attention
(_tsbomt sobatomion 3

768 dims

* Transformer is much more expensive than CNN
* Transformer: Multiple feed-forward layers (close to MLP)
 CNN: shared filters



Development of Language Models
GPT 3 (2020) = 10 * Turing NLG
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https://towardsdatascience.com/gpt-3-the-new-mighty-language-model-from-openai-a74ff35346fc



Environmental Problem
Carbon Footprint for DL in NLP

Consumption COse (Ibs)
Common carbon footprint benchmarks Air travel, 1 passenger, NY 5K 1984
Human life, avg, 1 year 11,023
in Ibs of CO2 equivalent American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000
Roundtrip flight b/w NY and SF (1
passenger) | 1,984 Training one model (GPU)
Human life (avg. 1 year) NLP pipeline (parsing, SRL) 39
, , w/ tuning & experimentation 78,468
American life (avg. 1 year) Transformer (big) 192
US car including fuel (avg. 1 lifetime) w/ neural architecture search 626,155

Transformer (213M parameters) w/ neural
architecture search

626,155 Table 1: Estimated CO» emissions from training com-

mon NLP models, compared to familiar consumption.

Chart: MIT Technology Review « Source: Strubell et al. « Created with Datawrapper

Strubell, Emma, Ananya Ganesh, and Andrew McCallum. "Energy and policy considerations for deep learning in NLP." arXiv preprint arXiv:1906.02243 (2019).
On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? (Timnit Gebru, 2020)

Sharir, Or, Barak Peleg, and Yoav Shoham. "The Cost of Training NLP Models: A Concise Overview." arXiv preprint arXiv:2004.08900 (2020).




What Green Learning Attempts to Achieve

Objectives:

o« Low power consumption in training and inference (primary goal)
o Small model size

e High performance

o« Weak supervision

e Interpretability



Fundamentals of Green Learning



Green Learning (GL)

Traditional Pattern Recognition Paradigm
e 1%*module (from data to features) - feature extraction
e 2"dmodule (from features to decision) — classifier or
regressor
Deep Learning Paradigm
 An integrated module (from data to decision)

Advantages of modular design
e Multi-tasking
 Unsupervised feature learning



Supervised Feature Learning in DL

Exemplary network: LeNet-5
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2 convolutional layers + 2 FC layers + 1 output layer
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Unsupervised Feature Learning in GL

Filter banks
 Multiple filters operating on local spatial patches
e Joint spatial-spectral representation

Filter kernel design
e Kernels form a base of a linear subspace
 Subspace approximation

C3:1. maps 16@10x 10

INPUT C1: feature maps rl_
Tfl-_

S 16@5x5
CS: layer F6 layer OUTPUT

N

| Full congection ’ Gauss:anoonnectvons
Subsampling Convoluhons Subsampling Ryl connection

Jax3z SRS S2:1. maps

6@14x 14

Convolutions
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One-Stage Transform with Filter Banks

Filter Banks: A set of filters operating in parallel on the input
Example: Laws’ 3x3 filters for texture analysis
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Laws’ Filter Banks
e |Input & Output of Laws’ filter bank

* |nput: animage of NxN pixels
e OQutput (w/o padding): a 3D tensor of dimension (N-2)x(N-2)x9
* Interpretation
e The response of each filter indicates the frequency
components of a local neighborhood of size 3x3 (9
channels)
* Limitations
* Filter coefficients are fixed (not adaptive to image contents)
 Only one-stage transform (no information of mid- and long-
range neighborhood)



New Transforms for Unsupervised Feature Learning

 One-stage Transform
e Saab transform
 Saab means “subspace approximation with adjusted bias”

 Improved Laws’ filter banks

e A variant of PCA
 Multi-stage Transform

e channel-wise (c/w) Saab transform



Saab Transform

e Subspace decomposition

S =S8pc DSac

 DC subspace is spanned by constant-element vectord (1, ..., 1)
e AC subspace is its orthogonal complement
e Conduct PCA on the AC subspace



Example of Saab Transform (1)

 Gray-scale images: 3x3x1 Saab Transform
e 1 DCfilter: constant-element filter (= mean of a 3x3 patch)
8 AC filters (PCA analysis applied to AC components)
e Covariance matrix of mean-removed 3x3 patches
 The first 8 eigenvectors of the 9x9 covariance matrix
e The last eigenvector has an eigenvalue close to O
e QOutput: (N-2)x(N-2)x9 three-D tensor
* Why not apply PCA to 3x3 patches directly
e Need to subtract the ensemble mean of these 3x3 patches, which is
sensitive to the image input
* The ensemble mean of residuals approximates to a zero vector



Example of Saab Transform (2)

 Color images: 3x3x3 Saab Transform
e 1 DCfilter: constant-element filter (= mean of a 3x3x3 patch)
o 26 AC filters (PCA analysis applied to AC components)
e Covariance matrix of mean-removed 3x3x3 patches
 The first 26 eigenvectors of the 27x27 covariance matrix
e The last eigenvector has an eigenvalue close to O
e Common filter sizes in spatial domain
o 2x2, 3x3, 4x4, 5x5, etc.
 Should avoid the use of large filter sizes
 Correlation between long-range pixels is weaker
e The dimension of the output tensor would become too large



Lossless and Lossy Saab Transform

 Example of Lossless Saab Transform
 Input: NxN (N even)
* Filter size: 2x2
e Stride: 2
e OQutput: (N/2)x(N/2)x4
 Redundant Saab Transform
e The above setting but with stride =1

e OQutput: (N-2)x(N-2)x4
e Redundancy removal: (2x2) to (1x1) pooling
 Lossy Saab Transform
e Discard channels with small responses — dimension reduction



Generalization to Multi-Stage Saab Transform

Subspace
Approximation
via Saab Transform

Neighborhood
Construction

ji_ f IS Saab —_—
- — T ——9 ~ | Transform | T
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Correlation Analysis of Saab Coefficients

. Pixclﬂup :
L Unit |
I(_{_ = |

.l“‘:_l x -SE_] x Kl._l

Table 1. Averaged correlations of filtered AC outputs from the

first to the third Pixelhop units with respect to the MNIST, Fashion
MNIST and CIFAR-10 datasets.

Dataset MNIST Fashion MNIST CIFAR-10
Spatial 1 0.48 4+ 0.05 0.51 + 0.03 0.53 £ 0.03
Spatial 2 0.22 4+ 0.03 0.29 4+ 0.05 0.27 + 0.06

Spectral 1 0.33 £ 0.07 0.12 + 0.02 0.0156 4 0.0005
Spectral 2 0.18 + 0.02 0.13 +£0.01 0.0188 £ 0.0004
Spectral 3 0.0099 £ 0.0001  0.0082 4+ 0.0001  0.0079 £ 0.0004
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Comparison of Saab and c/w Saab Transforms

Saab Transform

S; X §; X K| Si+1 X Si41 X Kipy
__Saab |
Transform
(5; X 8, K;) (Si+1X Si41, Kigq)
Channel-wise, N . »
Saab Transform
‘ Kiyq ’

Channel-wise (c/w) Saab Transform
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3-Hop c/w Saab Transform

Leaf Node

Intermediate Node

Short-range correlation

Mid-range correlation

Long-range correlation
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Level-0
Eoot Node
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Level-3
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Frequently Asked Questions

e |s the Saab transform linear?
* Yes. More precisely, it is an affine transform.

e Can alinear transform yield powerful features?
 Nonlinear classifiers are important
* Linear features may not be that bad

e Easyto understand
e Clustering can increase the power of Saab features
e Clustering can be done after (or before) the Saab transform



PixelHop
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Green Learning for Image Classification

* Yueru Chen and C.-C. Jay Kuo, “PixelHop: a successive subspace learning (SSL) method for object
classification,” the Journal of Visual Communications and Image Representation, Vol. 70, July 2020, 102749.

e Yueru Chen, Mozhdeh Rouhsedaghat, Suya You, Raghuveer Rao and C.-C. Jay Kuo, “'PixelHop++: A Small
Successive-Subspace-Learning-Based (SSL-based) Model for Image Classification,” IEEE International
Conference on Image Processing (ICIP), Dubai, United Arab Emirates, October 25-28, 2020.



Experiment Set-up

< Datasets:

> MNIST
= Handwritten digits 0-9
= Gray-scale images with size 32x32
= [raining set: 60k, Testing set: 10k

> Fashion-MNIST

= Gray-scale fashion images with size 32 x 32
= [raining set: 60k, Testing set: 10k
> CIFAR-10

= 10 classes of tiny RGB images with size 32 x 32
= [raining set: 50k, Testing set: 10k

< Evaluation:

= Top-1 classification accuracy

Fashion-MNIST

= - FEE
EE — el
EiES rEEe

CIFAR-10



Performance Comparison

Table 8
Comparison of testing accuracy (%) of LeNet-5, leedforward-designed CNN (FF-CNN ),
PixelHop and PixelHop" for MNIST, Fashion MNIST and CIFAR-10.

Method MNIST Fashion MNIST CIFAR-10

LeNet-5 99.04 91.08 68.72

FF-CNN 97.52 86.90 62.13

PixelHop 98.90 91.30 7137

PixelHop" 99.09 91.68 72.66
Table 9

Comparison of training time of the LeNet-5 and the PixelHop method on the MNIST,
the Fashion MNIST and the CIFAR-10 datasets.

Method MNIST Fashion MNIST CIFAR-10

LeNet-5 ~25 min ~25 min ~45 min
PixelHop ~15 min ~15 min ~30 min
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PixelHop++

32 x 32 x K,

PixelHop++ Unit
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Model Size and Test Accuracy Comparison

Table 3. Comparison of test accuracy (%) of LeNet-5 and Pixel-
Hop++ for MNIST, Fashion MNIST and CIFAR-10.

Method MNIST  Fashion MNIST CIFAR-10

LeNet-5 09.04 89.74 68.72
PixelHop++ (Large) 08.49 00.17 66.81
PixelHop++ (Small) 07.98 88.84 64.75

Table 4. Comparison of the model size (in terms of the total pa-
rameter numbers) of LeNet-5 and PixelHop++ for the MNIST, the
Fashion MNIST and the CIFAR-10 datasets.

Method MNIST  Fashion MNIST CIFAR-10
LeNet-5 61,706 194,558 395,006
PixelHop++ (Large) 111,981 127,186 115,623

PixelHop++ (Small) 20514 33,017 62,150
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Green Learning for Fake Image Detection

Hong-Shuo Chen, Mozhdeh Rousedaghat, Hamza Ghani, Shouwen Hu, Suya You and C.-C. Jay Kuo,
“Defakehop: a light-weight high-performance deepfake detector,” IEEE International Conference on
Multimedia and Expo (ICME), Shenzhen, China, July 5-9, 2021.



Introduction

 Deepfake videos are synthetic media in which a
person in a video is replaced with someone else

 Deepfake videos can be potentially harmful to
society, from non-consensual explicit content
creation to forged media by foreign adversaries
used in disinformation campaigns

* As the number of Deepfake video contents grows
rapidly, an automatic and effective Deepfake
detection mechanism is in urgent need

Original video Fake video
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Motivation

Most state-of-the-art Deepfake detection methods are based upon deep learning (DL) technique

 They can be mainly categorized into two types
 convolutional neural networks (CNNs)
o integrate CNNs and recurrent neural networks (RNNSs)

Input
seguences

CNN ——— Real/Fake

4

Input
sequences

4

CNN - RNN — Real/Fake

37



Motivation

The size of DL-based methods is large -- containing hundreds of thousands or even millions of
model parameters

Training deep neural networks is computationally expensive

There are also non-DL-based Deepfake detection methods, where handcrafted features are
extracted and fed into classifiers

The performance of non-DL-based methods is usually inferior to that of DL-based ones

Our goal is to develop a light-weight non-DL-based methods and achieve a high-performance
results

38



Face Preprocessing

Sampling Frames LLandmarks Extraction

RAde | and
3 : +315
+
+

*
*
+ gt
s
kA -
"

L¢3

Face Alienment

Regions Extraction

39



Defakehop Framework
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Channel Wise Saab Transform
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Model Size

Table 4. The number of parameters for various parts.

Subsystem Number of Parameters
Pixelhop++ Hop-1 270
Pixelhop++ Hop-2 90
Pixelhop++ Hop-3 90
PCA Hop-1 10,125
PCA Hop-2 1,225

PCA Hop-3 45
Channel-Wise XGBoost(s) 12,000
Fianl XGBoost 19,000

Total 42,845




Datasets

 We use two datasets from 15t generation dataset and two datasets from 2" generation dataset.

e The numbers of real, fake, train and test video for each dataset are shown.

Datasets Real Fake Train Test

UADFV 49 49 78 20
FaceForensics++ 1000 1000 1440 280
Celeb-DF vl 408 795 1103 100
Celeb-DF v2 800 5639 6011 518
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Experiments

Table 2. Comparison of the detection performance of benchmarking methods with the AUC value at the frame level as the
evaluation metric. The boldface and the underbar indicate the best and the second-best results, respectively. The italics means
it does not specify frame or video level AUC. The AUC results of DefakeHop is reported in both frame-level and video-level.
The AUC results of benchmarking methods are taken from [19] and [20]. ¢ deep learning method, ® non deep learning method.

1st Generation datasets

2nd Generation datasets

Method UADEV  FF++/DF Celeb-DF  Celeb-DF | Number of
vl v2 parameters
Zhou et al..(2017) [3] InceptionV3? 85.1% 70.1% 55.7% 53.8% 24M
Afchar et al..(2018) [4] Meso4® 84.3% 84.7% 53.6% 54.8% 279K
Liet al..(2018) [17] FWA?® (ResNet-50) 97.4% 80.1 53.8% 56.9% 23.8M
Yang et al..(2019) [9] HeadPose? (SVM) 89% 47.3% 54.8% 54.6% -
Matern et al..(2019) [11] VA-MLP? 70.2% 66.4% 48.8% 55% -
Rossler et al..(2019) [2] Xception-raw? 80.4% 99.7 % 38.7% 48.2% 22.8M
Nguyen et al..(2019) [5] Multi-task® 65.8% 76.3% 36.5% 54.3% -
Nguyen et al..(2019) [6] CapsuleNet® 61.3% 96.6% - 57.5% 3.9M
Sabir et al..(2019) [8] DenseNet+ RNN“ - 99.6% - - 25.6M
Li et al..(2020) [17] DSP-FWA? (SPPNet) | 97.7% 93% - 64.6% -
Tolosana ef al..(2020) [1] Xception® 100 % 99.4% 83.6% - 22.8M
Ours DefakeHop (Frame) 100 % 95.95% 93.12% 87.65% 42 8K
DefakeHop (Video) 100 % 97.45% 94.95 % 90.56 % 42.8K




Experiments

 The ensemble of multiple facial regions can boost the AUC values by up to 5%. Each facial region
has different strengths on various faces, and their ensemble gives the best result

 The performance of DefakeHop degrades by 5% as video quality becomes worse

Table 1. The AUC value for each facial region and the final

ensemble result. Table 3. Comparison of Deepfake algorithms and qualities.

Lefteye Righteye Mouth Ensemble FF++ with Deepfakes | FF++ with FaceSwap

UADFV  100%  100%  100%  100% HQ (c23) LQ(c40) | HQ(c23) LQ (c40)
FF++/DF  9437% 93.73% 9425%  97.45% Frame | 95.95%  93.01% | 97.87%  89.14%
Celeb-DF vl 89.69%  88.20% 92.66%  94.95% Video | 9745% 9580% | 98.78% 93.22%

Celeb-DF v2 85.17%  86.41% 89.66%  90.56%
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Experiments

data.

True Positive Rate

Fig. 4. The ROC curve of DefakeHop for different datasets.
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DefakeHop can achieve about 85% AUC with less than 5% (250 videos) of the whole training
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Fig. 5. The plot of AUC values as a function of the training

video number.

46



Eﬁu

(S

2nd generation dataset: Celeb-DF

47



Our codes are released in GitHub!

& hongshuochen [ DefakeHop

<> Code (D) Issues

¥ master ~

ﬂ hongshuochen Update model.py

O O OO

)

data/UADFV

img
preprocessing
README.md
defakeHop.py
model.py
multi_cwSaab.py
saab.py

utils.py

i1 Pull requests

(*) Actions [ Projects

¥ 1branch 0 tags

Delete .DS_Store
add images and data
add preprocessing
Update README.md
first version

Update model.py
add images and data
first version

first version

(1) Security [~ Insights

{51 Settings

Go to file Add file ~

74338b7 on Mar 29 ) 18 commits

2 months ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago
2 months ago

2 months ago

& Unwatch ~ 1 W Unstar 14 % Fork

About Q3

Official code for DefakeHop: A Light-
Weight High-Performance Deepfake
Detector

& arxiv.org/abs/2103.06929

deepfake-detection
successive-subspace-learning

green-learning

0 Readme

Releases

No releases published
Create a new release
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Summary

Defakehop has several advantages
 asmaller model size
« fast training procedure
e high detection AUC
* needs fewer training samples

Extensive experiments were conducted to demonstrate its high detection performance
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Green Learning for Point Cloud
Classification and Registration

Min Zhang, Haoxuan You, Pranav Kadam, Shan Liu and C.-C. Jay Kuo, “PointHop: an explainable
machine learning method for point cloud classification,” IEEE Trans. on Multimedia, Vol. 22, No. 7,
pp. 1744-1755, July 2020.

Min Zhang, Yifan Wang, Pranav Kadam, Shan Liu and C.-C. Jay Kuo, “PointHop++: A Lightweight
Learning Model on Point Sets for 3D Classification.” IEEE International Conference on Image
Processing (ICIP), Dubai, United Arab Emirates, October 25-28, 2020.

Min Zhang, Pranav Kadam, Shan Liu and C.-C. Jay Kuo, “Unsupervised feedforward feature (UFF)
learning for point cloud classification and segmentation,” IEEE International Conferences on Visual
Communications and Image Processing (VCIP), Macau, Dec. 1-4, 2020.

Pranav Kadam, Min Zhang, Shan Liu, and C-C. Jay Kuo. "R-PointHop: A Green, Accurate and
Unsupervised Point Cloud Registration Method." arXiv preprint arXiv:2103.08129 (2021).



Background

What: A point cloud is a set of points in the 3D space
How: 3D scanning devices such as Lidar, measured by time of flight (ToF)
Why? With reduced cost of sensors, point cloud processing has become popular

3
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Datasets and Performance Metrics

ModelNet-40 ShapeNet Part
* 40 categories of objects (e.g., * 16 object categories

airplane, table, desk, sofa) e 50 parts: each object is annotated with
e Each object has 2048 points two to six parts

e Each shape has 2048 points

Area of Overlap ‘
Area of Union .

Evaluation metric:

e C(lassification - accuracy

e Segmentation — Intersection over Union (loU)
e Registration - Mean Square Error (MSE)

)
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Two Topics

Classification:
label each object

—> (Chair

Registration:

align two point clouds
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PointHop — A Successive-Subspace-Learning-
based (SSL-based) or Green Learning (GL)

method

Deep Learning Methods

Point Cloud FeedForward Pass

.............................

iF g L :
E '@* S Deep Network
::* P 1y '
& A ]
o ®

.............................

black box

Feature

—> I

e.g., PointNet, PointNet++

e High cost
e Slow speed

Hard to interpret
e GPU

- Need BP
- \Parameter Update/ Need Label-Guidance
Back-Propagation Need GPU
E .
: e.g., PointHo
Point Cloud FeedF 1 Pass Wh|te box g ’ p - SS L
— " * Low complexity
Figasg . . * Fast training or
£ oy . eature
3 & ' 3 |
§ % - Ly b > * Interpretable GL
& f:
g i_:;‘ """"""""""""""" Need BP * CP U
- ‘\M‘alnelel‘ Updal_e/ Need Label-Guidance
Back-Propagation Need GPU
Vi |

Zhang, Min, et al. "PointHop: An Explainable Machine Learning Method for Point Cloud Classification." IEEE Transactions on Multimedia (2020).



PointHop

Point Cloud

Nx3

cascade of PointHop units + classifier
spatial sampling scheme: farthest point sampling (FPS)
* reduce computational complexity
e speed up the coverage rate

M Aggregations

PointHop
Unit

M Aggregations

y

Unit ' ] Unit
l M Aggregations l M Aggregations
M x D! M x D? M x D? MxD' |
Classifier

Do

m Table

= Bench

= TV Stand
Cup

or

Zhang, Min, et al. "PointHop: An Explainable Machine Learning Method for Point Cloud Classification." IEEE Transactions on Multimedia (2020).
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PointHop Unit

. —

Space

- 8 Octant © o o

Partitioning | o Grouping  ¢2 { Saab

E— : Transform

© |Jeo
8
T of
Z
Input Point Cloud Local Region (One Hop) Points in Order Local Descriptor Feature Reduction

- o /

Y

Constructing a local descriptor with attributes of one-hop neighbors Using the Saab transform to
reduce the dimension of

e Solve both unordered and disturbance problem
the local descriptor

 The attributes of a point grow from a low dimension one to a high . .
e the dimension grows at

dimension one
a slower rate -

Zhang, Min, et al. "PointHop: An Explainable Machine Learning Method for Point Cloud Classification." IEEE Transactions on Multimedia (2020).



PointHop++

New features:

 Reduce model complexity — c/w Saab transform
e Order discriminant features automatically based on the
cross-entropy criterion

. %8 Quadrant /,/ o

Space ¢ { -

O Partitioning/ o | xGrouping &2 Saab
/O S — Transform
\ , /,f €8 {
g
Input Point Cloud  Local Region (One Hop) Points in Order Local Descriptor Feature Reduction
A
N2 x D* N2 x1
. /
Pomt}.{op N N c/w Subsl?a%ce — >
N x 3 N« D! N1 x1 }T' Unit Decomposition —
8
£ _ //" >T N?x8 N?x1
& | PointHop | c/w Subspace —» \
g Unit Decomposition —» oint Jw Sub -
g \\ ointtop __ WY | ¢/wSubspace .
Unit

First hop

Decomposition —_

N3 x p?

Second hop

Zhang, Min, et al. "PointHop++: A Lightweight Learning Model on Point Sets for 3D Classification." ICIP 2020

N3 x1

[ c/w Subspace __,

Decomposition —_

N3x1 -

_—v

[ ¢/w Subspace __,

Decomposition —_

Third hop |
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Performance Evaluation for ModelNet-40:
Accuracy and Sparser Models

Method Accuracy (%)
class-avg | overall
PointNet [10] 86.2 89.2
Supervised PointNet++ [11] - 90.7
PointCNN [12] 88.1 92.2
DGCNN [13] 90.2 92.2
LFD-GAN [28] - 85.7
: FoldingNet [29] - 88.4
Unsupervised PointHop [15] 844 801
PointHop++ (baseline) 85.6 90.3
PointHop++ (FS) 86.5 90.8
PointHop++ (FS+ES) 87 91.1

Zhang, Min, et al. "PointHop++: A Lightweight Learning Model on Point Sets for 3D Classification." ICIP 2020



Performance Evaluation for ModelNet-40:

Complexity and Model Size

Method Time Parameter No. (MB)
Training |Inference | Filter Classifier Total
PointNet [10] 7 10 - - 3.48
GPU PointNet++ [11] 7 14 : - 1.48
DGCNN [13] 21 154 - - 1.84
PointHop [15] | 0.33 108 [0.037 - .
CPU PointHop++ 0.42 97 10.009 0.15 0.159
(Hours) (ms)

Zhang, Min, et al. "PointHop++: A Lightweight Learning Model on Point Sets for 3D Classification."

ICIP 2020
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POINT CLOUD REGISTRATION

e Registration is the process of finding a spatial transformation that optimally aligns two point
clouds
e Register point clouds to merge multiple point cloud scans to get a globally consistent view

e Registration acts as a pre-processing step before other tasks

Registration algorithm

60 OO
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PROBLEM STATEMENT

We are interested in finding a rigid transformation (rotation and translation) that optimally registers the two

point clouds

Input — 1. target point cloud (N, x 3) source = R * target + t

2. source point cloud (N, x 3)

Goal — Align source to target (N, x3 -> N x3)

Output — 3D Rotation matrix (R) and translation vector (t) that minimizes point-wise MSE

1 0 coslly —sinlly|rcostl, —-sinll, 0 Ly
R=1|0 cosll, st 0 sin(1, cosll, O], t=|ty
0 sinll, cosl], ||sin D cosl], 0 0 1 t,
61 OO



R-POINTHOP

2% USC University of

N AT,
LL A LY

ML

/

e
_ , _|R-PointHop c/w Saab [p———x
: v unit transform
N, x 24 R-PointHop| | c/w Saab A——— _ b x
"—Vé/' unit transform N.ox 8 X
R-PointHop c/w Saab fa——— 3 L P —— : v
; ' N,x 8 o —
unit Lz v 2_ R-PointHop c/w Saab [p——x
A— X oy v
==X : —nd unit transform
R-PointHop| | c/w Saab Pr——=—=x W X
unit transform 1 =X
Fy I ") §
1** hop 204 hop 3t hop
N, points N; points ) N, points
» Downsampling » Downsampling » Downsampling s e
v : node to next hop
Feature learning x : discarded node
/ \ / source \
top M, correspondences | - m
+I ; = .. —— e e
SVD of v+ X 3 =
Apply (R P70 | | ¥ N 2 N,xD
- . [ covariance 7+ + correspondences 3 O 4
ansformation . M.x D —+ [ m
matrix 2 O u —N\,
“\_.. m_n
L |
Ratio test |
N Feature distance matrix
\T ransformation estimatioy \Poim‘ correspondence B 2% neighbor (N, xNy) /

Southern California

concatenate leaf nodes
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LOCAL REFERENCE FRAME (LRF)

Consider a local patch around every point — find K
nearest points
Take a PCA of the K x 3 data matrix

The three principal components gives orthogonal axes

ranked in order of decreasing variance
These axes are invariant under any rigid transformation

(rotation and translation)

3 OO
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POINT ATTRIBUTE CONSTRUCTION

Find K nearest neighbors of a point

Project neighbors onto local reference frame (LRF) — XYZ coordinates to local coordinates

Divide 3D space into 8 octants based on local coordinates — space partitioning

Compute mean of points in each octant and concatenate 8 means, total 24D attribute

Sign —_
resolution

=

p

nput point and its LRF k nearest neighbors of point project neighbors onto LRF space partitioning point attribute

64 (OO



SIGN RESOLUTION

Every eigen vector comes with a sign ambiguity of +/-

Choice of sign affects space partitioning, hence a consistency is desired

Solution — project the neighboring points onto a principal axis to get 1D local
coordinates

Order points in ascending order and calculate moment about median point

If left moment > right moment, flip the sign

This can be formulated as multiplying local coordinates with reflection matrix

whose diagonal entriesare 1 /-1

22 USC University of

\ pET | - )
1 Southern California

median —+
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MULTI-HOP FEATURE LEARNING

oW N

Channel-wise Saab transform — discard nodes with energy less than threshold

Downsample the point cloud
Repeat attribute building step (R-PointHop unit)

Collect all leaf nodes at end of fourth hop (point feature)

v
/ - JUEEEVN R-PointHop c/w Saab [ { \
. v, unit transform
N, x 24 R—Pom.tHop N c¢/w Saab Pr—= . e x
vi:»{,/' unit transform Nox 8 —X
R-PointHop .| ¢/wSaab |[de——m 5 L % 3 v
i M N,x 8 v Y
unit transform N - v R-PointHop c/w Saab [d——=x
* \|R-PointHo c/w Saab [a——— ){ unit transform M
. P B 'y "4 X
unit transform X
-~ L | b }X(
1%t hop 274 hop 3t hop
N, points N; points i N, points
» Downsampling » Downsampling » Downsampling o o e

\ Feature learning

v : node to next hop
X : discarded node

/
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FEATURE LEARNING

A N

Use of LRF makes features invariant to rotation and translation — robust correspondence
Hierarchical multi-hop approach helps learn short-, mid- and long-range point relations

No class label, no pairs of point clouds with ground truth transformations to learn Saab kernels
One pass feedforward

Independent of correspondence and transformation estimation modules
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POINT CORRESPONDENCES

For every point in the source, find its matching point in target using nearest neighbor in feature

space
e Select a subset of good correspondences (NEW!!)
1. Smaller |2 distance in feature space

2. Smaller ratio of distance to first neighbor by distance to second neighbor

/ source

top M, correspondences a .
N “_\ \\\
s +f+l X ) top M, o = N A D
¢ + 7+ correspondences & M X
M,xD B
‘/\~L «—
[
Ratio test
1 neiehh Feature dlstance matrix
. St neighbor
\Pomt correspondence B 2 neighbor (N, xN,) / s QO
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POINT CORRESPONDENCES

e Rich feature information to filter out correspondences against use of spatial information in SPA
e Favors partial point cloud registration —
1. overlapping points have smaller 12 distance in feature space

2. Cannot comment from their spatial coordinates

69 OO



TRANSFORMATION ESTIMATION - SVD

e Given corresponding points (f., g) solve the orthogonal procrustes problem

1.  Find means f= Z —1fi and g = —Zl 19i
2. Compute covariance matrix Cov(F,6) =YY .(fi—PH(gi—9)T
3. Find SVD of covariance matrix Cov(F,G) = USVT

4. Optimal R and t are given by R*=VUT and t'=-R*f+g

P. H. Schonemann, “A generalized solution of the orthogonal procrustes “ problem,” Psychometrika, vol. 31, no. 1, pp. 1-10, 1966.

% USC University of
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4 )

R.tf SVD of
covariance
matrix

Apply |
transformation

\T ransformation estimatioy

M,xD
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MODELNET40 DATASET

e 40 classes of CAD models

e 2048 points in each point cloud

e 9840 training samples

71 OO

Wu, Zhirong, et al. "3d shapenets: A deep representation for volumetric shapes." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
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EXPERIMENTAL SETUP

For training — use the target point clouds (without rotations)
For testing — apply a random rotation and translation along three coordinate axes to get source
Rotation — uniformly sample rotation angle in [0, 45°]
Translation — uniformly sample in [-0.5,0.5]
Comparisons with — ICP, Go-ICP, FGR (model free)
PointNetLK, Deep Closest Point (DCP), PR-Net (deep learning)
Salient Points Analysis (SPA)

Evaluation metric — MSE, RMSE, MAE between ground truth and predicted angles

72 OO
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TEST ON UNSEEN OBJECTS AND UNSEEN CLASSES

e Best performance among benchmark methods
e Moreover, R-PointHop can better generalize on unseen classes

than DCP and PointNetLK

TABLE I TABLE I
REGISTRATION ON UNSEEN POINT CLOUDS REGISTRATION ON UNSEEN CLASSES
MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

Method R) ®) R ®) () ® Method (R) ®)  (R) ¥ () ()
ICP [¥] 451.11 21.24 17.69 0.049701 (0.222937 0.184111 ICP [¥] 467.37 21.62 17.87 0.049722 0.222831 0.186243
Go-ICP [ 1] 140.47 11.85 2.59 0.00659 0.025665 0.007092 Go-ICP [ 1] 192.25 13.86 291 0.000491 0.022154 0.006219
FGR [37] 87.66 9.36 1.99 0.000194 0.013939 0.002839 FGR [77] 97.00 9 84 1.44 0.000182 0.013503 0.002231
PointNetLK [5] 227.87 15.00 4,23 0.000487 (0.022065 0.005405 PointNetLK [5] 306.32 17.50 5.28 0.000784 0.028007 0.007203
DCP [7] 1.31 1.14 0.77 0.000003 0.001786 0.001195 DCP [23] 992 3.15 2.01 0.000025 0.005039 0.003703
SPA [20] 318.41 17.84 5.43 0.000022 0.004690 0.003261 SPA [20] 354.57 18.83 6.97 0.000026 0.005120 0.004211
R-PointHop 0.12 0.34 0.24 0.000000  0.000374  0.000295 R-PointHop 0.12 0.34 0.25 0.000000  0.000387  0.000298

unseen objects unseen classes 73 Q0
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TEST ON NOISY DATA

e Robust to noise

 Refinement using ICP further reduces error

TABLE III
REGISTRATION ON NOISY POINT CLOUDS
MSE RMSE MAE MSE RMSE MAE

Method ® (R (R () () )
ICP ] 55838  23.63 19.12  0.058166 0241178 0.206283
Go-ICP [ 1] 131.18 1145 2.53  0.000531 0.023051 0.004192
FGR [ ] 607.69  24.65 10.05 0.011876 0.108977 0.027393
PointNetLK [25]  256.15  16.00 459  0.000465 0.021558 0.005652
DCP [ 7] .17 1.08 0.74 0.000002 0.001500 0.001053
SPA 0] 331.73 1821 6.28  0.000462 0.021511 0.004100
R-PointHop 7.73 2.78 0.98  0.000001 0.000874 0.003748

R-PointHop + ICP 1.16 1.08 0.21 0.000001  0.000744  0.001002

Add Gaussian noise of zero mean and 0.01 variance to source

74 OO
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TEST ON PARTIAL DATA

* Only a part of the source and target point cloud visible

TABLE IV

REGISTRATION ON PARTIAL POINT CLOUDS (R-POINTHOP* INDICATES CHOOSING CORRESPONDENCES WITHOUT THE RATIO TEST).
Registration errors on unseen objects Registration errors on unseen classes
Method MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE
(R) (R) (R) (V) () (1) (R) (R) (R) (1) (1) ()

ICP [¥] 1134.55 33.68 25.05 0.0856 0.2930 0.2500 | 1217.62 34.89 2546  0.0860 0.293 0.251

Go-ICP [ 1] 195.99 13.99 3.17 0.0011 0.0330 0.0120 157.07 12.53 2.94 0.0009 0.031 0.010

FGR [37] 126.29 11.24 2.83 0.0009  0.0300  0.0080 98.64 9.93 1.95 0.0014 0.038 0.007

PointNetLK [25] 280.04 16.74 7.55 0.0020  0.0450  0.0250 526.40 22.94 9.66 0.0037 0.061 0.033

DCP [ 7] 45.01 6.71 4.45 0.0007  0.0270  0.0200 95.43 9.77 6.95 0.0010 0.034 0.025

PR-Net [ 5] 10.24 3.12 1.45 0.0003  0.0160  0.0100 15.62 3.95 1.71 0.0003 0.017 0.011

R-PointHop* 3.58 1.89 0.11 0.0002  0.0150  0.0008 3.75 1.94 0.12 0.0002  0.0151 0.0008
R-PointHop 2.75 1.66 0.09 0.0002 0.0149 0.0008 253 1.59 0.08 0.0002 0.0148 0.0008 75 @@
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TEST ON REAL WORLD DATA

STANFORD BUNNY

e Real scans of bunny — 10 scans, ~50k points in each point cloud
e The model trained on ModelNet40 is reused

e Surprisingly, DCP does not do so well for this dataset

TABLE V
REGISTRATION ON THE STANFORD BUNNY DATASET

Method MSE RMSE MAE  MSE RMSE  MAE
(R) (R) (R) 0 ) (D

ICP [¥] 177.35 13.32 10.72  0.0024  0.0492  0.0242

Go-ICP [°1]  166.85 12.92 4.52 0.0018  0.0429  0.0282

FGR [27] 3.98 1.99 1.49 0.0397  0.1993  0.1658

DCP [27] 41.45 6.44 4.78 0.0016  0.0406  0.0374

R-PointHop 2.21 1.49 1.09 0.0013  0.0361  0.0269

G. Turk and M. Levoy, “Zippered polygon meshes from range images,” in Proceedings of the 21st annual conference on Computer graphics and interactive techniques, 1994, pp. 311-318.
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TEST ON REAL WORLD DATA

STANFORD 3D SCANNING REPOSITORY

e Registration on some more scans — drill, armadillo, Buddha, dragon

77 (OO



LOCAL VS GLOBAL REGISTRATION
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ICP and its variants work well only in presence of a good initial alignment (local in nature)

Rotation invariant features make R-PointHop useful for global registration

Can be used as an initialization for ICP
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TOWARDS GREEN LEARNING

e Deep learning has reformulated registration as a supervised learning problem — large number of
pairs of point clouds used along with ground truth transformations
e Large model size, longer training times, expensive GPUs — large carbon footprint

e (lassical model-free methods are favorable in this respect, but poor performance

m Training time Model size Resources

40 minutes / epoch

PointNetLK (200 epochs) 630kB 1 GPU
Deep Closest Point 27 hours
(DCP) 21MB 8 GPUs
R-PointHop 40 minutes 200kB CPU + multithreading

G I ing —1 t and high perf !
reen learning — low cost and high performance 9 Q)



Conclusion



Similarities of GL and DL

GL DL
: , Successively growin Gradually enlarged
Information collection . Y8 5 y : 5
neighborhoods receptive fields
Information Trade spatial dimension Trade spatial dimension
processing for spectral dimension  for spectral dimension
Spatial information . . : :
P Spatial pooling Spatial pooling

reduction




Differences between GL and DL

GL DL
Model expandability Non-parametric model  Parametric model
Incremental learning Easy Difficult
Model architecture Flexible Networks
Model interpretability Easy Difficult
Model parameter search Feedforward design Backpropagation
Training/testing complexity Low High
Spectral dim. reduction Subspace approximation  Number of filters
Task-independent features Yes No
Multi-tasking Easy Difficult
Incorporation of priors and constraints Easy Difficult
Weak supervision Easy Difficult

Adversarial Attacks Difficult Easy
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